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I. INTRODUCTION

The general object in the study of the adsorption wave (8, 12, 24, 25, 28, 31,
37) has been to obtain an understanding of the various factors which determine
the variation in concentration of a gas effluent from a bed of adsorbent. The
study of the adsorption wave consists in the consideration, from an experimental
and theoretical point of view, of the distribution of gas throughout a bed, both
on the adsorbent and in the air above the adsorbent. A typical distribution
curve showing the concentration of gas in the air above various points in the
bed of adsorbent is shown in figure 1(A). The curve for the concentrations

1 This work was performed under OSRD contract OEMsr-282 between Northwestern
University and the Office of Scientific Research and Development, Washington, D. C.
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which would be in equilibrium with the adsorbed gas at various points in the
bed would be similar in shape but displaced slightly to the left. The term “ad-
sorption wave’ is generally applied to the movement of these distribution curves,
to the right in figure 1(A), during the continuous passage of gas-laden air through
the bed of adsorbent. A complete mathematical description of the wave would
effect a number of important consequences. It would be possible to predict the
performance of a particular bed of adsorbent, e.g., a gas-mask canister, from a
minimum of experimental data and without exhaustive tests on the bed itself.
It would also be possible to devise the best test procedures on small-scale heds
from which to obtain the information necessary for the prediction and evalua-
tion of the behavior of large reactors. A complete understanding of the ad-
sorption wave would lead also to the design for the most efficient type of reactor.
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Fig. 1. Flow of gas through an adsorbent

Equal in importance to these consequences would be the elucidation of the mech-
anism of the adsorption process for various gases on different types of adsorbent,
for such an understanding would suggest additional treatments for the improve-
ment of the adsorbent and would also indicate when the natural limit to such
improvement had been attained.

The problem of the adsorption wave has not been solved in its most general
form, primarily because of the prodigious mathematical difficulties entailed
(7, 8, 32, 34). In connection with this problem of correlating the performance
of small-scale and large-scale reactors in chemical-engineering processes (1, 9,
i1, 12, 33), the opinion has been expressed (5) that the correlation is impossible
of attainment in a truly rigorous manner. Nevertheless, a number of simplified
special cases of the adsorption wave have been considered and with these results
as guides it has been possible to develop several semiempirical approaches to the
problems of performance and mechanism of reaction.
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It is generally recognized (8, 17, 20) that the removal of a gas from air by a
porous adsorbent may involve one or more of the following steps: () diffusion
(mass transfer) of the gas from the air to the gross surface of the granule; (2)
diffusion of the molecules of gas into (or along the surface of) the large pores of
the adsorbing particle; (3) adsorption of the molecules on the interior surface of
the granule; (4) chemical reaction between the adsorbed gas and the adsorbent
or adsorbed oxygen, water, or impregnant.

The relative importance of each of these four steps may vary widely with the
particular conditions under which the removal is taking place. Mass transfer
is influenced strongly by the flow rate of the gas stream, by the diffusion coeffi-
cient of the gas, and by the particle size of the adsorbent, but is relatively un-
affected by temperature. The importance of diffusion in the pores is determined
by such factors as the particle size, the structural characteristics of the pores,
certain diffusional properties of the system, and the rate of reaction at the in-
ternal surface. The speed of adsorption at the interface depends on the nature
and extent of the surface as well as on the activation energy for the adsorption
of the particular gas under consideration. Chemical reaction is also determined
by the properties of the surface, but much more specific effects will be obtained
than in adsorption. Since large activation energies may be expected in steps
(8) and (4), these processes will be highly sensitive to temperature.

In the general case, all four steps in the removal process may proceed with
rates of approximately the same magnitude, and hence a problem of extreme
mathematical difficulty is presented. On the other hand, in many situations
one particular step may be much slower than the others, and hence may be
considered the rate-controlling process. For a single rate-controlling process,
a number of mathematical approaches have been developed. A few attempts
have also been made to treat situations with more than one rate-controlling step,
and for certain special circumstances, partial success has been attained.

II. Tarories PrEDICTING EFFLUENT CONCENTRATION As A FUNcTION oF TIME

The ultimate aim of a mathematical analysis of the adsorption wave is an
expression for the dependence of the effluent concentration on time. Even
without such an expression, however, some qualitative description of the shape
of an effluent-time curve can be given. Figure 2 illustrates a number of in-
teresting cases. If the reaction on the adsorbent were instantaneous and if the
adsorbent were infinitely fine-grained, none of the adsorbable gas would pene-
trate until some time ¢, at which time the adsorbent would be saturated, and
then the gas would penetrate at full influent concentration. Such an adsorbent
would exhibit a transmission curve such as A in figure 2. On the other hand,
if the reaction is not instantaneous, a curve such as B would be exhibited. This
curve would be symmetrical only for certain simple rates of adsorption. In
addition to these two examples, one may encounter cases (e.g., in the removal of
carbon monoxide) where the adsorbent, or its impregnant, acts as a catalyst for a
reaction involving the toxic gas. As a result, the effluent-concentration curve,
C, may rise very slowly; and if the catalyst remains at least partially unpoisoned,
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the transmission of gas may never reach the full influent value. It is also con-
ceivable, although no such case has yet been encountered, that the rate of cataly-
sis may be very high compared to the rate of supply of gas, and in such circum-
stances the transmission curve would be the time axis, that is, none of the gas

would penetrate,
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Fic. 2. Transmission of a gas by an adsorbent

A. THEORIES IN WHICH ONE STEP IS RATE-CONTROLLING

1. The general differential equation

Consider a stream of gas and air flowing through a bed of adsorbent, as is
indicated in figure 1(B). Each layer of the adsorbent removes a portion of the
gas from the air; hence the concentration of gas drops from an influent value
of ¢y to an eflluent value of c.. A cross-section of infinitesimal thickness, dz,
will reduce the concentration from ¢ to ¢ 4+ de (de¢ is, of course, negative).
From the principle of conservation of mass it follows that

Quantity of gas entering
= quantity of gas picked up by adsorbent 4 quantity of gas leaving (1)

The quantity of gas entering the infinitesimal section of bed will be equal to the
concentration, ¢, times the volume rate of flow, L, times the interval of flow, dt.

Quantity of gas entering = cLd¢ 2)

The amount of gas picked up by the charcoal will be given by the rate of pickup
per unit volume, dn/df, times the volume of the infinitesimal section of the bed
(area X depth), multiplied by the interval of exposure.

Quantity picked up by the charcoal = %:3 (Adz)d¢ 3)

The quantity of gas leaving the section dz will obviously be given by:
Quantity leaving = (¢ + de¢)Ld¢ 4)
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Setting up the equality demanded by the conservation principle, one obtains

Lt = 2 (Ada)ds + (¢ + do)Lats ®)
which can be rearranged to give
A on

Since ¢ is a function of the variables z and ¢, the total differential is (38):

oc dc
And since

AR/t =V (8)
and

L =TVAax 9)

where V is the linear velocity through the interstices between the particles of
the adsorbent and « is the porosity (ie., the fraction of voids per unit gross
volume of bed), one obtains

Oc Oc _ 1 on
which can be rearranged to give
19n _ Oc oc
s otV (1)

It is implicitly assumed in the derivation of this equation that the concentration
of gas is small and that diffusion in the direction of flow is negligible.

The solution to equation 11 depends on the mathematical relation one assumes
for On/0t, the local rate of removal of the gas by the granules, and the particular
mathematical form to be chosen depends on the mechanism of the removal
process. No matter what mechanism is visualized, the local rate of removal
would be dependent in general on the following variables:

(1) The nature of the adsorbent

(2) The nature of the gas to be removed

{8) The geometrical state of the adsorbent

(4) The temperature

(6) The local concentration of the toxic gas, as well as of other gases in the
air

(6) The relative amount of the toxic and other gases already adsorbed by
the granules

(7) The velocity of the gas-air stream
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In all cases which have been considered, it has been assumed that the first four
variables are maintained constant, but that on/0t may depend on one or more
of the remaining three.

2. Diffusion as the rate-controlling step

Case a: In some cases one may encounter a gas which has no back-pressure
on the adsorbent, but which nevertheless ceases to be removed by the granules
when the moles of gas on the granules, n, approaches N, the saturation capacity
of a unit gross volume of adsorbent for the gas. Under these conditions the local
rate of removal would be given by the relation:

1on _ Fac
where F is the mass-transfer coefficient, a is the superficial surface per unit volume
of granules, and p is the density of the air-gas mixture. The solution (10) of
the differential equation may be resolved into two cases. For all times up to
t; when n = N, at the entrance face, the concentration at a given point in the
bed is given by the equation:

¢ Fa z
£=mep| 107 ] (49
For times greater than f,, the following relation holds:
° - _Fafz oty _
o E"p[ o <V No> 1] 9

Case b: If a gas is adsorbed reversibly, the equation obtained for ¢/c, depends
on the character of the adsorption isotherm. One of the simplest cases that
has been considered is that of the linear isotherm, for which

c* = bn (15)

where c¢* is the concentration of the gas in the air stream at a given point in the
bed in equilibrium with the adsorbent at that point, and b is a constant. With
a linear isotherm governing the back-pressure of the gas, the equation for the
local rate of removal becomes (10):

10n _ Fa

ad  ap
The solutions of the differential equations, for the boundary conditions en-
countered in charcoal, are well known because completely analogous equations
have been encountered in the problem of heat exchange in granular beds. Analy-
tical expressions, in terms of Bessel functions, for the solutions are cumbersome
to handle, and hence the results are given best in the form of reference curves of
¢/co as a function of the important variables. The curves worked out by Furnas
(2, 13), however, are very incomplete in regions of low concentrations, the re-
gions of great interest in work on toxic gas transmission, and consequently a

(¢ — ¢% (16)
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semilogarithmic plot taken from a report by Hougen and Dodge (16) is given in
figure 3. For values of ¢/c, below 0.01, reference should be made to the report
of Drew, Spooner, and Douglas (10).

Case c: Most gases do not exhibit a linear isotherm on charcoal. A better
approximation is the Langmuir isotherm, which may be expanded (10) in a power
series of the form

Kn , K
* —_— e— ———
A A

where K is a constant. Using the first two terms in equation 17 as a parabolic
approximation to the isotherm, one may substitute for ¢* in equation 16. The
solutions of the resultant equations in terms of standard graphical procedures
have been worked out and are described by Drew, Spooner, and Douglas (10).

4o (17)

3. Adsorption or reaction on the surface as the rate-controlling step

Case a: The earliest analysis of the adsorption wave was made by Bohart and
Adams (3) on the assumption that the gas is adsorbed irreversibly and at a local
rate of removal governed by the equation:

12n
o Of
where k; is a constant. A similar treatment has been carried out more recently

by Hinshelwood et al. (6). Both groups of investigators have derived the fol-
lowing expression for the variation of the concentration of gas in the air stream:

cofc =1+ (Exp [—Fiot]) (Exp [klgl)z] - 1> (19)

This equation in its various forms has been used very widely to interpret and
to interpolate data on the performance of various charcoals against toxic gases.
Unfortunately, present indications are that there are few cases where the rate of
removal of a toxic gas by charcoal as presently impregnated is governed primar-
ily by adsorption or reaction at the surface. Diffusion, or mass transfer, seems
to make some contribution to the slowness of removal of almost all gases by
charcoal; hence equation 19 is not strictly applicable.

Case b: An attempt has been made by Lister (23) to consider the relations to
be obtained when adsorption on the surface is the rate-controlling step but for
the case where the adsorption is reversible and the adsorbed gas exerts a back-
pressure. For such conditions, the equation for the local rate of adsorption
becomes

= ke(No — n) (18)

10n

a Ot

where %; and k; are constants.

No complete solution of the resultant differential equations has been given.

Approximations have been given for the conditions obtained with fresh char-
coal, but the general validity of these has been questioned (9).

= klc(No - n) - kgn (20)



IRVING M. KLOTZ

248

paq ur uoyisod pUs SUIN} JO UOTIOURY B 58 PIAOWAIUN s83 Jo uondBL ‘¢ 'O
I
5%
4

SIS €2 Gub SZv Sl¢ S3c 92z 923 su su|se so S. 9 s6 sy s o 02 & o

T o

e | Ny 1 / /
BENEE AR NN aiay
[ AR [LIY
o [T [INANRINIIRE [ ]
!“[ N ‘_ “ /1 | 4\ \ \\ T \ \:\
A N I S | I tv,l\lrt\ / % ~ L*:‘\ [N ivERli
~\w_ FEERE T \.:\ THT
L A
NN \.\\“\m\:\\\_\\\
S LT .,,.
I 2 Y SV I3 e L e
N Tt e s eS| sTaTRTSI8 AN 18 011111}
AAAA A AL IR AA A A - m...



THE ADSORPTION WAVE 249

B. THEORIES IN WHICH MORE THAN ONE STEP CONTRIBUTES TO RATE OF REMOVAL.

1. Diffusion in air and deposition on surface contributing

It has been possible to construet (10) a differential equation for the local rate of
removal, on the assumption that the diffusion of the toxic molecule from the air
to the charcoal and the subsequent deposition process, whether chemical or ad-
sorptive in nature, both contribute to the slowness of removal. The general
equation for this process has not been solved. Nevertheless, certain special
cases have been considered, but each of them reduces to one of the single-step
processes discussed above and hence does not warrant further elaboration.

2. Diffusion in air and processes within the granule contributing

A very detailed consideration of the nature of the processes involved in the
removal of gases by adsorbents has been made by Wicke (35). Emphasis has
been given particularly to diffusion within the pores and to the various factors
which influence the cross-sectional and longitudinal mixing in the intergranular
spaces. Where the equilibrium adsorption of a gas follows a linear isotherm,
the differential equations have been solved and have been shown to be appli-
cable to the experimental data on the removal of carbon dioxide at 100°C. For
gases with curved isotherms, however, the general solution to the differential
equation has not been obtained, though certain special cases have been con-
sidered.

C. COMPARISON OF THEORIES WITH EXPERIMENT

None of the theoretical approaches gives a satisfactory correlation of the ex-
perimental data on the removal of a toxic gas by charcoal. Even with gases
such as chloropierin, where, as is shown later, mass transfer seems to be the rate-
controlling step, the observed dependence of effluent concentration on time does
not agree, over any appreciable range, with the curves given in figure 3. The
primary cause of the deviation, for other gases as well as for chloropicrin, is the
curvature of the adsorption isotherm, a condition which so far has not been in-
corporated, except in an approximate, empirical manner (27), into the wave
equations. In addition to the curvature of the isotherm, a further difficulty
that arises with most other toxic gases of interest is the combination of mass
transfer and one or more of the succeeding steps in controlling the rate of re-
moval of the gas by the adsorbent. Minor discrepancies may also arise from
thermal factors. Temperature changes in the removal process, which in some
cases are many tens of degrees, may raise the back-pressure of the adsorbed gas
or may affect the rate of mass transfer in the carrier stream.

There exist sufficiently fundamental differences in the differential equations
for the local rate of removal in the mass-transfer and surface-adsorption mech-
anisms so that one can determine the presence or absence of a slow diffusional
step. In equation 18, based on surface adsorption as the rate-controlling step,
the velocity, V, does not appear; hence in the integrated equation for c/co, V
will enter only as z/V, as can be verified by glancing at equation 19. Similarly,
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on expanding and rearranging equation 19 to obtain an equation for f, the
instantaneous break-time,? one obtains an expression in which V enters only as
z/V. 1In contrast, when mass transfer (diffusion) is the controlling step, the

2 For definition see the appendix.
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velocity of flow enters the equation for the local rate of removal, inasmuch as F,
the mass-transfer coefficient, depends on the rate of flow. In consequence, the
instantaneous break-time depends on V as well as on 2/V, and a plot of ¢, versus
z/V will give different curves for different rates of flow. (It should be emphasized
that the cumulative break-time, i.e., the time in which a total quantity of gas
sufficient to produce a change in some indicator has escaped from the bed, de-
pends on V and z/V whether or not V enters the expression for the local rate
of removal. Therefore, the cumulative break-time cannot be used to dis-
tinguish between mechanisms of removal.) Thus, a criterion has been es-
tablished (9) for detecting the presence of a slow diffusional step. In figure 4,
this criterion is applied to some data on chloropicrin (36). It is obvious from
the graph that ¢, depends on V as well as on z/V, and in consequence that dif-
fusion contributes to the slowness of removal of chloropicrin by charcoal. Con-
sequently, it is unlikely that the theories based on surface adsorption or surface
reaction as the rate-controlling process will be applicable to any charcoal which
has sufficient activity to make it useful in protection against toxic gases.

Unfortunately, these relationships were not realized in much of the early work
and many extrapolations were made on the basis of the Bohart—Adams—Hinshel-
wood equation (3, 6), which is based on a surface-deposition, rate-controlling
mechanism. The particularly misleading fact was the observation that in
many circumstances a plot of log [(co/¢) — 1] was linear with time, a necessary
condition derivable from equation 19. Unfortunately, such linearity is not
a reliable test of the applicability of equation 19, for all the other mechanisms
will also lead to such linear equations over wide ranges if suitable values are
chosen for the constants. When constants for equation 19 are determinedfrom
plots of log [(co/c) — 1] versus time, one finds that both %k, and N, vary with the
rate of flow of the air stream. Such behavior is completely at variance with the
postulates of the mechanism and illustrates the inapplicability of the equation
to the removal of gases by the usual charcoal adsorbents.

II1. SEMIEMPIRICAL TREATMENTS

In the absence of a satisfactory comprehensive theory of the adsorption wave»
investigators have been forced to develop semiempirical methods of treating
data. Primary emphasis in work with toxic gases and charcoal has been given
to equations which relate break-time to the common variables such as bed depth,
rate of flow, particle size, and concentration of influent gas. With the accumu-
lation of results from different modes of approach, it has also been possible to
correlate certain relations with particular mechanisms of removal.

A. FACTORS AFFECTING BREAK-TIME

1. Nature of gas flow in charcoal

The flow of fluids through beds of granular solids is very complicated in na-
ture for, as is quite obvious, the channels are very tortuous and non-uniform.
It is impossible to fix the dimensions or number of channels, for quite frequently
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two streams may merge or a single stream may redistribute itself into several
new paths of flow. Since sudden contractions or enlargements in intergranular
spaces may exist, it is quite possible to have both streamlined and turbulent
flow occurring simultaneously in different portions of a granular bed. In con-
sequence, there is a much slower transition from conditions of laminar flow

10

5
ON 3
I
L 2

<> <
o CHARCOAL *I CHARCOAL *2
o 02-16 MESH) "5 = (2-16 MESH)
Ll
T10 ;
O
Z
MODIFIED

i €

5 REYNOLDS NOw»IO
(1N
<

3

2

20 30 50 100 200 300 500
FLOW - LITERS/MINUTE

F1a. 5. Pressure-drop data

to those of turbulent flow in the passage of gas through an adsorbent bed than
in the flow of fluid through pipes.

The nature of the flow of fluids is studied usually by measuring the pressure
drop in the bed or pipe. Correlations are then made with the dimensionless
parameter known as the Reynolds number, D,Vp/u. When a graph of a func-
tion of the pressure drop known as the friction factor (see 14 or 15) is plotted
against the Reynolds number, two linear portions are observed, and they inter-
sect at the so-called critical Reynolds number, a value corresponding to condi-
tions under which laminar flow is transformed into turbulent flow.
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Studies have been made of the flow of fluids through porous carbon (15),
and a critical Reynolds number of about 4 has been found. Extensive work has
also been carried out on the flow of gases through beds of charcoal (22). Two
representative curves are shown in figure 5. From these curves and other data
it has been concluded that in the charcoals investigated the critical Reynolds
number is about 10. The Chemical Warfare Service laboratories (30) and
English workers (19) have found a transition in the same region. Nevertheless,
one cannot be certain that the same critical value will be observed with all
charcoals of any possible shape. It is quite conceivable that curious shape
factors may occasionally be encountered, in view of the rather arbitrary use of
particle diameter, D, , in place of pore size in the Reynolds number. In all of
the work deseribed here, however, it has been assumed that the eritical region
is in the neighborhood of a Reynolds number of 10.

IN MIN.
>
[v4)

LIFE

DEPTH OF BED
Fig. 6. Life~thickness curves

2. The effect of bed depth

The dependence of canister or tube life on the depth of charcoal has been
investigated more widely than has the dependence on any other variable. The
reason for such emphasis is perhaps obvious, for the amount of adsorbent neces-
sary determines very largely the bulk of the canister. Life~thickness curves
have become, therefore, the most common method of representing the per-
formance of a charcoal. In consequence, the interpretation of performance in
terms of the mechanisms of removal has revolved around the elucidation of
life-thickness curves.

(a) General character of life~thickness curves

A survey of performance data shows that two types of life-thickness curves
are encountered. The simplest case is a linear relation such as is shown in
curve A of figure 6. Most organic gases when tested in a dry condition against
dry charcoal exhibit linear life-thickness curves. In principle, a break-time test
using a cumulative indicator should not show a linear relation with bed depth,
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at least not at small depths (27), but this lack of linearity is frequently overlooked
because few tests are carried out at very small depths. Curve B exhibits a very
common observation of curvature at low lives with a tendency to linearity at
high break-time. Such behavior should always be encountered in cumulative
tests of the break-time. It is also usually observed when tests are carried out
with humidified gases and charcoal, and in some cases occurs in tests under dry
conditions,

Whether or not curvature oceurs, the life~thickness curve intersects the bed-
depth axis at a finite value. It follows then that there exists a critical bed depth,
I, below which the life is zero. This critical length will vary with the conditions
of flow, concentration, mesh size, and nature of the charcoal, and it is this mani-
fold dependence which has engaged much attention. Numerous attempts
have been made to correlate these variables in some convenient analytic ex-
pression, for in small beds, as are encountered in canisters, it is the critical bed
depth which primarily determines the degree of protection.

(b) The Mecklenburg equation

A very convenient expression for the linear life-thickness curve has been
derived by Mecklenburg (26) from elementary considerations of conservation of
mass. At the break-time a negligible portion of the toxic gas has penetrated the
bed; hence one can assume that

Weight of gas supplied = weight of gas picked up by adsorbent  (21)

The weight of gas supplied by the air stream will be equal to the time of flow
(the break-time in minutes) times the rate of flow (in liters per minute) times
the concentration (in grams per liter). In turn, the pickup by the charcoal may
be arbitrarily considered as occurring in a certain portion of the bed instantane-
ously and up to the saturation value, while the remainder of the bed, defined
by Mecklenburg as the “dead layer,” remains completely free of gas. As was
emphasized by Mecklenburg, the “dead layer” is a purely fictional concept
devised merely to facilitate the derivation of the following equation and to obvi-
ate the necessity of considering in detail the distribution of gas in the bed of
adsorbent. With this arbitrary division it follows that the amount picked up
by the charcoal will be equal to the saturation value per unit volume times the
area times the difference between the bed depth and the depth of the “dead
layer,” h. In algebraic terms the equality in equation 21 may be expressed as
follows:

tbLCo = NoA (Z - h) (22)

This equation may be rearranged readily to give an expression for the break-
time:

Ny A
LCo

From this equation it is obvious that the slope of the life-thickness eurve (i.e.,
a plot of ¢, versus z), for a fixed rate of flow, input concentration, and bed cross-

(z— M (23)

tb=




THE ADSORPTION WAVE 255

section, is a measure of the capacity (N) of the charcoal. For a system which
obeys this equation throughout the complete life-thickness curve, the “‘dead
layer,” h, and eritical bed depth, I, must be equal, so that

Nod fe-D (24)

b =

The great deficiency of equation 24 is that it cannot be used to extrapolate
information from one set of flow or concentration conditions to another without
further information on the dependence of the critical bed depth on these variables.
The wave theories discussed above set certain requirements for the variation
of critical bed depth, and where these theories are applicable they may be used
to extend equation 24. Further details are considered in a subsequent section.

(¢) Curvature due to cumulative method of test

If the break-time is defined in terms of the period necessary for a total cumu-
lative amount of gas to penetrate the bed, it can be shown (27) that the life-
thickness curve even in the simplest mechanism of removal would obey an ex-
pression of the form

]ur, EXp ( >
N o kI ks Ve

In general, equation 25 would not be linear; however, for large bed depths, the
first term inside the brackets becomes large in comparison to the second term,
1, and the equation as a whole approaches the linear relation:

No Az
LCg

These predictions are in agreement with the behavior observed in cumulative
tests.

t. = + ks (26)

(d) Curvature in systems using instantaneous tests

In the testing of metal-ion-impregnated charcoals with certain inorganic
gases it has always been observed that the life-thickness curves for humidified
gas streams and humidified charcoal show pronounced curvature at small bed
depths but approach linearity with deep beds. Curve B of figure 6 is a typical
example. The increasing slope of this curve with increase in bed depth implies
an increasing capacity per unit volume of adsorbent for the toxic gas. This
expectation has been verified by an examination of the distribution of gas ad-
sorbed on the bed at various time intervals. For a substance such as chloro-
picrin, which exhibits a linear life-thickness curve on dry charcoal, the amount
of gas taken up by a unit volume of charcoal reaches a maximum which is not
surpassed by increasing the time of exposure of the bed to the toxic gas. Asa
result, the distribution curves behave as shown in figure 7(A). In contrast,
2 humidified impregnated charcoal shows a continuously increasing capacity
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per unit volume for certain inorganic gases and in consequence exhibits a set of
distribution curves such as is shown 